arXiv.cond-mat/0504349 v1 14 Apr 2005
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We investigate the transfer function of the discretizedgmrens in finite-difference time-domain (FDTD)
and transfer matrix (TMM) simulations; the latter allow tav@nate the problems associated with the explicit
time dependence in FDTD simulations. We argue that the pba&reed in the FDTD transfer function near
the maximum parallel momentu) ... is due to finite time artifacts. We also find the finite disaation
mesh acts like imaginary deviations frgim= ¢ = —1 and leads to a cross-over in the transfer function from
constance to exponential decay around,.. limiting the attainable super-resolution. We propose ap#m
qualitative model to describe the impact of the discreitiratk ..., is found to depend logarithmically on the
mesh constant in qualitative agreement with the TMM sinoifest

PACS numbers: 41.20.Jb, 42.25.Bs, 42.70.Qs, 73.20.Mf

The ability of the left-handed finite slab with a homoge- of surface plasmons, ie. local field enhancement, at the first
neous permeability, = —1 and permittivitye = —1 to form  interface for the slightly lossy PL. The FDTD simulations
a perfect lens (PL) has received much attention since fiest pr of the PL suffer from explicit time dependence. Since the
posed by Pendfy Such a slab does not only compensatetime domain simulations involve a finite time window from
the phase of the propagating waves emanating from a poirthe "switch-on" to the actual measurement of the fields, the
source to form a focus on the opposite side of the slab. It alscesults are obtained as a superposition of a finite wigth
amplifies the evanescent waves which decay exponentially idistribution around the target frequeney which narrows
vacuum into exponentially growing solutions inside thédsla as the simulation time increases. The corresponding &ansf
This way all the source amplitudes reemerge in the focus. Thnction¢rprp(wo) differs considerably from the stationary
immediate consequence of this behavior is that the resoluti (frequency-domain for a single frequencytransfer function
of the image may overcome the diffraction limit. Soon after,t.,(w). In conjunction with the physically always present dis-
it was realized?® that the restoration of the evanescent wavegersionu(w), e(w) of the left-handed material this leads to a
by the PL is exceptionally sensitive to small deviationsifro possible coupling to the surface plasmons on both intesface
u = ¢ = —1. The transfer function of the PL, defined by of the slab which in turn causes convergence problems in the
the amplitude ratio of a plane wave component at the focu§DTD. The FDTD only converges for the near-perfect lens
and the source, is, in the ideal case, unity forualand k| where the surface plasmons are damped by the small imagi-
up to infinity. For the near-perfect lens it exposes an ordenary part in the LH slad®. If we approach the ideal PL the
of unity (o(1)) behavior at small parallel momemtga which  FDTD ceases to converge which renders the method unusable.
turns into exponential decay e~ *14 for largek . The cross- Due to the existence of surface plasmons at the LH slab
over betweem(1) behavior and exponential decay for a giventhe transfer function of the near-perfect lens includeggol
PL defines a maximum parallel momentui, ... which  along the surface plasmon dispersion relétiaich can be
qualitatively constitutes the highest evanescent wallersti  approximated by- tanh(k; d/2) = —1 4 for k; well above
stored by the PL, hence, defines the maximum attainable sulhe propagating modes. By virtue of the LH materials disper-
wavelength resolutiothz i, ~ 27/k| max. FOr small devia-  sion relation this essentially real directly translates into a
tionsy = e = —1+~ywithy € C, |y| <« 1fromthe ideal PL  frequency deviation from,. The poles approach, expo-

a logarithmic dependendg, .. d ~ —log || of the cross-  nentially for growingk . For smallk the poles of the surface
over momentum has been fondHere and throughout the plasmons are usually outside the finite widtkdistribution,
paper we employ a dimensionless formulation measuring aive find convergence of the FDTD and the transfer function
lengths in units of the linear size of the unit cell and all fre-  iS dominated by the stationary transfer functibg(w) at
quencies in units of the vacuum speed of light dividedlby ~wo. For largek the poles are exponentially damped in all
In particular, this renders the dimensionless vacuum speed l0ssy cases and cease to contribute either. However, for in-
light ¢ = 1 and wavelength = 27 /w. termediatek ~ k| m.x the surface plasmon poles constitute
the principal contribution térprp(wp). This leads to non-

Almost all numerical investigations of the PLs imag- convergence of the FDTD due to the emerging "beating pat-
ing properties deploy finite-difference time domain (FDTD) tern", modulated by the frequency difference of the two sur-
simulation using a time and space discretized versioface plasmon branches as explained by Gémez-Sanfus
of the Maxwell equations. After a few contradictory We emphasize here, this also explains the unexpected peak
publicationé®¢ Rao and Ong® established the amplifica- trpTp(wo) > 1 aroundk) ..« in the FDTD transfer function
tion of the evanescent waves inside the LH material slab antbund by Rao and Organd also confirmed by our own FDTD
the cross-over behavior in the transfer function numdsical simulations. The peak originates from the contributionhef t
for the FDTD method. They also observed the occurrencelivergingto. (wpole) to the magnitude ofrprp(wo). Ana-



lytically we would expect a monotonous transition from the
o(1) behavior below the cross-over momentum belgw, ..
to exponential decay above for the near-perfect lens.

In general we are interested in the stationary case transfer

functiont . (k, w, d) of the PL as this allows us to estimate

the imaging properties. The field components in the focus are E

given by the field components in the source as
Efocus(k” s t) = / dw too (kH s w) Esourcc(kH ) g(wv WO) eth

whereg(w,wp) is the frequency distribution around the fre-

guency of the point source due to the switch-on of the source

and the finite observation time window.E,urce(k) and

g(w,wp) are parameters of the setup and measurement, only

too (K, w) is an intrinsic property of the lens. In the FDTD
this stationary transfer function, (k;, w) is only accessible
via the temporal Fourier transform of the simulation result
which is neither convenient nor especially robust againost n
merical error.

In contrast, the transfer matrix method (TMM) simulations
provide a means to directly obtain the stationary transfiec{
tion for a single frequency. We can simulate transmissiah an
reflection amplitudes as well as the spatial field distriuti
without the artifacts of finite time simulations. In order to
eliminate the effect of numerical error we employ an arlpjtra

precision implementation of the TMM described for instance

in Ref.[10.
Fig.d(a) shows the TMM simulated spatial field distribu-
tion for the parallel component of the E field in TE polar-

ization across a PL for one particular evanescent wave conj

ponent withk; = 1.89w and several spatial discretizations
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FIG. 1: (Color online) The distribution of the electric field TE
mode is shown from source (= 0) to focus ¢ = 12) across the
ossless (a) and lossy (b) perfect lens for successivelydiseretiza-
tion. The left-handed slab between the interfaces=at3 andz = 9

ranging from 240 to 12857 linear mesh points per vacuuMnas;, = ¢ = —1 for the lossless PL and = ¢ = —1 + ~ with

wavelength. The LH slab extends from= 3 to z = 9, which
corresponds to a thickness @28\. The vertical solid lines
indicate the interfaces. The source is located at0 and we
get an image at = 12. Note that despite the elimination of
the explicit time-dependence of the FDTD simulations wié sti
observe unexpected field enhancement at the first interface
the PL. These artifacts are easily associated with the filigte
cretization leading to reflection of incident evanescentieso
at the first interface. Only for very fine discretization mesh
the field distribution approaches the analytically expeeig-
zag-form featuring a minimum at the first interface. For sear

~ = 0.03 1 for the lossy PL. We discretized using a uniform cubic
mesh with a linear resolution ranging from 240 to 12857 meshtp
per vacuum-wavelength.

gf surface modes at the first interface: For the evanescent
waves in vacuum between source and first interfagces

real andk, purely imaginary. Whenever the PL involves
an (causal) imaginary part or the evanescent solutions on
the right hand side of the slab couple to propagating modes
or are subject to absorption, electromagnetic field enesgy i

discretizations we observe a prominent maximum at the firsgiSSipated in the system. This energy has to be provided

interface accompanied by (almost) zeros of the fields befo
and after the interface indicating a phase shift of the respo

of the interface. In Figd1(b) we show the corresponding fieldVaV€ ¢
distributions for the lossy PL where a small imaginary part

~v = 0.03 i is added to the permeability and permittivity of the
LH slab. Again we observe the field enhancement at the fir

rQYy the source and transmitted across the vacuum gap before

the PL. Although it is well known that a single evanescent
annot transmit energy this is not true for a superposi-
tion A etkitkor 1 Beilki—kor of incoming and reflected
evanescent wave component. The general equation for the

Jdime-averaged Poynting vector for the TE mode inside the

interface, but the zeros of the field have disappeared. How/acuumslab is

ever, in this case the behavior is dominated by the losses i
the LH slab and the dependence on the discretization is muc
weaker. The observed dependence on the imaginary part for

fixed discretization (not shown) confirms previous results o
tained from FDTD simulatiods

ikl
S)rg = Im(AB )w—u + 1)
ﬂ %e—QIm(kLr) + |B|26+21m(kLr) +R6(AB*)
Wit 2

For the lossy PL there is a simple physical explanatiorand similarly for the TM mode. Considering the first term it
for the reflection of evanescent waves and the occurrends immediately clear that in order to have an energy current
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2143/ ‘l. o\Q‘\ ior. Here the cross-over is determined by both, discretinat
643/X m s O ’;Q and the losses due to the explicit imaginary parts. For small
107° 5 ; ' 'é > ‘7 and coarse discretization the behavior of the transfertfomc
oy o ’ is entirely dominated by the finite discretization: the joB%.

virtually coincides with the transfer function for the Itesss
PL. For successively finer discretizatiopstarts to dominate
the behavior, leading to a saturation of the discretizatien
pendence ok .« at a value determined by. These results
show that for a given lossy PL there is always a minimum dis-
cretization mesh constant where the transfer function-'con
verges", ie. becomes independent on the discretization. Fo
the simulated lossless perfect lens the cross-over in éms-r
fer function due to the discretization becomes the primiany |
iting factor for the observation of sub-wavelength resotut
In Fig.[d we show the dependence of the cross-over momen-
normal to the interface across the ghp{AB*) and thus the tum¥k; ..., on the discretization for the lossless and two lossy
reflection at the first interface has to be non-zero. Note thaf.28\-PLs atw = 3/10 as extracted from the data presented
this even applies to the ideal PL if we have an outgoing energin Fig.[. It is evident that for the lossless PL over a wide
current or dissipation on the right hand side of the lens. range of discretizations, ,,.x increases logarithmically with
Now we shall consider the transfer function (k,w, d) the linear number of mesh points per vacuum wavelength. For
of the PL with and without losses from source to focus aghe 10ssy cases this slow increase saturates at a fiitgx
obtained by the TMM. In Figll2 we show the dependenceVhich in turn decreases with increasing deviatiofrom the
of the transfer function for a fixed frequeney= 3/10 on  lossless case. In order to achieve a moderate five-times bet-
the parallel momenturk; for several spatial discretizations ter resolution than the one provided by the propagating siode
for the lossless PL and two lossy PLs with imaginary partsalone for thed = 0.28 lossless PL, we have to push the
v = 0.0027 andy = 0.0057 added to both the permeabil- discretization to a ridiculously high value ®6" linear mesh
ity and the permittivity of the LH slab. Let us first consider Points per vacuum wavelength. Such discretization mesh den
the lossless PL represented by the dashed lines in bothgpane$ities are easily limited by the available computer power.
For all discretizations there is clear evidence for a cg- The effect of the discretization can be qualitatively under
fromo(1) behavior to exponential decay in thedependence stood in terms of a simple model. In the standard discretiza-
of the transfer function. The cross-over occurs monotolyous tion of the Maxwell equations the E and H field components
without a peak neak| ,,.x andk .. increases with finer are assigned to the links of two mutually dual lattided\s a
spatial discretization. This indicates that the discegiin  consequence a wave traveling towards the surface of a dis-
mesh constant acts like affectiveémaginary partin a contin- cretized homogeneous slab will first "see" the electric re-
uous lossy PL. For the lossy discretized PL, ie. adding an exsponse and approximately half a mesh step later the magnetic

FIG. 2: (Color online) The transfer function from source ¢ads is
shown for the lossy PL (symbols) with= ¢ = —1 + ~ for two dif-

ferent small imaginary partg = 0.002 ¢ (a) andy = 0.005¢ (b) and
different discretizations. The dashed lines show the spording
transfer function for the lossless PL. We discretized usinmiform
cubic mesh with a linear resolution ranging from 643 to 514#2%h
points per vacuum-wavelength. The additional rightmoshed line
corresponds t@02858 /.
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response (or vice versa, depending on the material dizareti ie. for smallk, we can neglect thé-correction in the de-
tion and definition of the interface). This can be analytical nominator and find an(1) behavior of the transmission func-
modeled assuming a continuum lossless PL with ¢ = —1 tion. In the opposite limit of largé; we can neglect the one
to be sandwiched between two thin layers with= —¢ = 1 in the denominator and find the transfer function decaying
and—u = ¢ = 1, respectively. The thicknesgsof the sur-  exponentially withkod. The asymptotic exponential decay
face layers shall be of the order of the discretization mesh_ ~ kﬁ (6%w*) exp(—2k)d) can be used to define the cross-
constant. Now we can derive the leading ord@orrections  gver momentunkma d = — log (w28 /kmax) Which has an
to the transfer function analytically using the transfetima  explicit solution in terms of the product-log function,
technique. We can calculate the total transfer matrix of the

left-handed slab7{) wrapped in surface layers( 75) and

the two surrounding vacuum slabs { as

kmax d = —W(—w25d) ~ —logd (6)
Timaging — 70(b) [7'3(5) mo(d) 7y (5)] To(a). (2
For the transfer matrix of an homogeneous slab in wave rep-
resentation we find for small 6. Sinced is assumed to be of the order of the
discretization mesh constant this qualitatively represéme
7,(d) = <O‘i(d) 5i(_d)> logarithmic dependence on the discretization observenén t
! Bi(d) a;(—d) TMM study above.

with the elements In conclusion we investigated the transfer function of the
, discretized perfect lens by means of FDTD and TMM simu-
ai(d) = cos(kid) + L (Ci + l) sin(k;d) (3) lations. The TMM has the advantage of computing the trans-
2 Gi fer function directly in(k,w)-space as well as eliminating
i 1\ . the problems associated with the explicit time dependemce i
pi(d) = 92 <<i - Z) sin(kid). 4)  the FDTD simulations. We argue that the peak observed near
k||, max in the FDTD transfer function is due to finite time ar-
The(; are defined ag; = uiko/(pok:) or §; = eok;/(e:ko) tifacts; it does not exist in the TMM simulations. Further we
for the TE and TM mode, respectively; indices zero refer tofound that the finite discretization mesh acts like an imagi-
guantities in vacuum. The transfer function coincides witlh  nary deviations from the = ¢ = —1 of the PL and leads to
transmission coefficientt(we choose _ for convenience) of —a cross-over in the transfer function frasfil) to exponential
the imaging scattering matri%,, ... = S [Timaging ) decay around a maximum parallel momentkjm, ., limiting
the attainable super-resolution of the PL. We propose alsimp

[1 + 0(5)] etko(a+b) gualitative model to describe the impact of the discreitirat
- = ” — - (3 interms of effective thinu-only ande-only surface layers ex-
cos(kod) + {1 + 62( 2 )} i sin(kod) ; ; ; ;
w?—k? posed by the discretized LH slab which have a thickndhst

_ _ _ ~ is of the order of the discretization mesh constéft,,..d is
We immediately recognize that the surface correctiorfound to depend logarithmically on the mesh constant in-qual
0*w!/(w? — k{) = 6°w*/k3 in the denominator acts like an jtative agreement with the TMM simulations. Since virtyall
imaginary part in the permeability or permittivity of theare  all simulation solve discretized Maxwell equations they alf
perfect lens. If the perfect lens conditior-b = d is satisfied  subject to this restriction.
we havet_ = (1+0(6))/(1+ 62wky 2(1 — e~2F24)). Let
us now consider the transfer function for evanescent waves, This work was partially supported by Ames Laboratory
ie. k| > w. Thenk, is purely imaginary such that the sec- (Contract number W-7405-Eng-82). Financial support of
ond term in the denominator is always positive and the transeU_FET project DALHM and DARPA (Contract nhumber
fer function has no poles. W?wik,?(1 — e %*29) <« 1,  MDA972-01-2-0016) are also acknowledged.
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